太阳城集团官网-太阳城官网_百家乐技巧_全讯网五湖四海 (中国)·官方网站

專 欄

首 頁

專 欄

學術報告(李進開,華南師范大學研究員,2019.05.31)

學術舉辦時間 2019年05月31日 14:00-15:00 學術舉辦地點 理學實驗樓312報告
主講人 李進開 主題 Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations ??(2019030)

學術報告

報告題目Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations   (2019030)

報告人:李進開(華南師范大學 研究員)

報告時間:20190531日(周五)下午14:00-15:00

報告地點:理學實驗樓312

 

報告摘要The entropy is one of the fundamental physical states for compressible fluids. Due to the singularity of the logarithmic function at zero and the singularity of the entropy equation in the vacuum region, it is difficult to analyze mathematically the entropy of the ideal gases in the presence of vacuum. We will present in this talk that an ideal gas can retain its uniform boundedness of the entropy, up to any finite time, as long as the vacuum presents at the far field only and the density decays to vacuum sufficiently slowly at the far field. Precisely, for the Cauchy problem of the one-dimensional heat conductive compressible Navier-Stokes equations, in the presence of vacuum at the far field only, the local and global existence and uniqueness of strong solutions, and the uniform boundedness (up to any finite time) of the corresponding entropy have been established, provided that the initial density decays no faster than $O(\frac{1}{x^2})$ at the far field. By introducing the Jacobian between the Euler and Lagrangian coordinates to replace the density as one of the unknowns, we establish the global existence of strong solutions, in the presence of vacuum, and, thus, extend successfully the classic results in [1,2] from the non-vacuum case to the vacuum case. The main tools of proving the uniform boundedness of the entropy are some weighted energy estimates carefully designed for the heat conductive compressible Navier-Stokes equations, with the weights being singular at the far field, and the De Giorgi iteration technique applied to a certain class of degenerate parabolic equations in nonstandard ways. The De Giorgi iterations are carried out to different equations to obtain the lower and upper bounds of the entropy.

[1] Kazhikhov, A. V.: Cauchy problem for viscous gas equations, Siberian Math. J., 23 (1982),44-49.

[2] Kazhikhov, A. V.; Shelukhin, V. V.: Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.

 

個人簡介:李進開,男,博士,研究員,博士生導師。2013年博士畢業于香港中文大學數學研究所,導師為辛周平教授。20138月至20167月在以色列魏茨曼科學研究所從事博士后研究工作,合作導師為Edriss S. Titi教授,20168月至20187月在香港中文大學數學系任研究助理教授,20188月起在華南師范大學華南數學應用與交叉研究中心任研究員。主要研究方向為流體動力學偏微分方程組,具體包括大氣海洋動力學方程組、可壓縮Navier-Stokes方程組等,相關成果發表于CPAM, ARMACPDE, JFA等雜志,入選第14批國家重大人才工程項目入選者。

 

上一條:地理學人講壇第215講 下一條:土木工程學院學術講座--叢正霞教授

郵編:510006        郵箱:webmaster@gzhu.edu.cn

通訊地址:廣州市大學城外環西路230號


移動網站

  • 官方微博

  • 官方微信

廣州大學版權所有     COPYRIGHT?1999-2021      粵ICP備 05008855號

玩百家乐官网新澳门娱乐城 | 百家乐有几种玩法| 百家乐规律打| 乌兰浩特市| 杨公24山| 怎样看百家乐官网牌| 八运24山下卦局| 澳门线上赌场| 真人百家乐来博| 白凤凰博彩通| 太阳城百家乐的分数| 六合彩开奖| 泰来百家乐导航| 徐水县| 狮威百家乐娱乐网| 阿瓦提县| 网上百家乐有哪些玩法| 百家乐官网注码管理| 百家乐娱乐代理| 电脑百家乐官网玩| 大发888问题缺少组件| 百家乐官网游戏介绍与分析| 水果机8键遥控器| 聚龍社百家乐官网的玩法技巧和规则| 大发888娱乐城17| 大发888好么| 百家乐群121398015| 澳门百家乐官网规则视频| 2011棋牌游戏赢话费| 24山六十日吉凶| 真人百家乐官网海立方| 百家乐合作| 百家乐有秘技吗| 百家乐官网投注注技巧| 百家乐群的微博| 娱乐城百家乐官网的玩法技巧和规则 | 宜宾县| 玩百家乐请高手指点| 百家乐官网游戏什么时间容易出对 | 博爱县| 宜黄县|